

Contents

- Polyvinyl choride (PVC)
- Rigid polyurethane
- Polycarbonate
- Polyalphaolefins
- Carbon fiber reinforced plastics

Used for construction

Partly used for construction

Other applications

Introduction to PVC

- PVC (polyvinyl chloride) is the third most common plastic in the world after polyethylene and polypropylene
- Its strength, durability and flexibility allows for a broad range of applications, especially for longterm use in outdoor construction
- Cost-effective material compared to, e.g., aluminum and wood
- Mainly produced from ethylene and chlorine

Key facts

- EU production of ~6 million metric tons in 2012
- ~70% consumed by the construction sector
- Consolidated market where the top
 6 manufacturers produce 75% of
 PVC resin in Europe
- Energy intense production of chlorine main driver of total PVC emissions of ~12 MtCO₂e
- ~360,000 tons recycled 2012 (of ~2-2.5m tons post-consumer waste)

Overview of value chain and associated emissions

SOURCE: Analysis based on industry reports and interviews

¹ Ethylene dichloride (EDC) and vinyl chloride monomers (VCM); 2 For one ton of PVC resin as amount of additives varies greatly between applications. Transportation emissions included in chain; 3 Emissions from naphtha production/ extraction and from ethylene production through conventional cracking, 0.29 ton ethylene/ ton of PVC; 4 Data for diaphragm cells, similar electricity requirements for diaphragm and membrane according to CEFIC. 0.73 ton chlorine/ ton PVC; 5 Include chlorination to EDC (53% direct chlorination and 47% oxychlorination, only ~60% of emissions accounted for- rest to HCl), EDC cracking to VCM and bulk polymerization to PVC; 6 Assumed additional 5% on weight basis, assumed average emissions from chemical industry (166m tons CO2 emissions from ~400m tons produced). Excludes plasticizers; 7 Shows range from 0 (landfilling) to 1.4 (incineration) tCO2/ ton PVC; 8 Lower range presented in bubbles assuming 15% recycling, upper range assuming no recycling; 9 Assuming 15% of waste incinerated

NOTE: Analysis based on production of 6m tons 2012. Indirect emissions 75-85% lower in France, representing ~13% of EU 27 market

Key abatement levers across the value chain

Use bio-ethylene as feedstock

- Can technically substitute petrochemical based ethylene completely
- Bio-ethylene based on ligno-cellolosic biomass required, with uncertain feasibility in near to mid-term horizon
- Breakthrough dependent on local conditions, technology mature and economic viability

Implement new technology in chlorine electrolysis

- Continue shift from mercury cell electrolysis towards more energy efficient membrane cell and ODC electrolysis
- Compared to mercury cell, membrane cell has ~25% lower emissions. In ODC technology emissions are ~40% lower than mercury cell emissions

Increase recycling rates with focus on pipes, fittings and window frames

- Composite structures containing at least 70% of PVC can be recycled using, e.g., the VinyLoop¹ process
- Availability of used PVC a short term barrier given lifetimes of up to 50 years and more
- Large potential from installed base in the coming decades from lead and cadmium free production since the 1980's

Switch to green energy throughout the value chain

Non-fossil energy share of total electricity production to be increased from today's 46% to ~70%², reducing CO₂ emissions from electricity generation by ~50%

Improve process and energy efficiency

- Continuous efficiency improvements in multiple process steps leading to a 25% reduction by 2030 (~2% p.a.)
- Examples may include improved polymerization techniques and decomposition of GHGs

Overview of total emission reduction opportunity by 2030

MtCO₂e, 2030, assuming levers pursued in parallel¹

¹ Individual levers have larger potential if pursued alone; 2 Assuming 1.0% production growth from 2012;

SOURCE: Analysis based on industry reports and interviews

³ Potential reduced to account for in-house energy production; 4 PVC scope

Contents Polyvinyl choride (PVC) Rigid polyurethane Polycarbonate Polyalphaolefins Carbon fiber reinforced plastics

Introduction to PC¹

- Easily worked, molded and thermoformed plastic, making it useful in many applications
- Main advantage over other types of plastics is great strength combined with light weight
- Known under trademarked names such as Lexan,
 Markrolon and Markoclear
- Two largest players, Bayer and SABIC, make up 51% of world capacity and five players make up 76%

Key facts

- ~0.8 million metric tons production in Europe per year (comprising 21% of global production)
- Total emissions: 4.4 4.5
 MtCO₂e (3.8 6.3 tCO₂e per ton PC²)
- Produced by condensation polymerization between bisphenol A and phosgene

¹ Transport emissions account for less than 1% of total emissions and are therefore excluded; 2 Residual from Plastics Europe PC Eco-profile when excluding BPA and phosgene emissions. Split between direct and indirect emissions assumed to be 50:50; 3 BPA data from Eco-profile, phosgene data from input figures in PC Eco-profile; 4 Data from PC Eco-profile; 5 Depending on end-of-life solution. Energy recovery emissions amount to 2.7-2.8 tCO2e / ton PC; 6 Cradle-to-gate figures based on figures from Plastic Europe eco-profiles. Cradle-to-grave given by adding end-of-life solution; 7 Upper range assuming no recycling, lower range assuming 5% recycling and reuse of today's waste stream (50% of production); 8 Assuming energy recovery is used as disposal method for 50% of all PC SOURCE: Analysis based on industry reports and interviews

B Key abatement levers across the value chain

Implement optimal technology in chlorine electrolysis

- Continue shift from mercury cell electrolysis towards more energy efficient membrane cell and ODC electrolysis
- Compared to mercury cell, membrane cell has ~25% lower emissions. In ODC technology emissions are ~40% lower than mercury cell emissions

Use as light-weight material in cars

- PC can be used to reduce weight and improve fuel efficiency in vehicles, e.g., by replacing glass or metal parts
- Scratch resistance is still an obstacle, but can to some extent be mitigated by coatings and films
- Extensive research being conducted and more applications possible in the future
- Usages today include FIAT'S 500L and VW XL1 (side windows)

Increase reuse and recycling

- Recycling and reuse rate target of 25%. Chemical reduction turns used PC into new feedstock. Used PC can be grounded up and used in automotive, computer and appliance applications
- Limited additional recycling process and transport emissions
- Collection is challenge since PC is generally not used in bulk quantities

Replace phosgene with CO₂ based feedstock

Production process uses

ethylene oxide (EO), by-

0.173 ton per ton PC

reducing CO2 emissions by

produced CO2 and Bisphenol A,

- Continuous efficiency improvements in multiple process steps leading to a 25% reduction by 2030 (~2% p.a.)
- Examples include improved process cooling and better catalyst systems

Switch to green energy throughout the value chain

 Non-fossil energy share of total electricity production assumed to increase from today's 46% to ~70%¹, reducing CO2 emissions from electricity generation by ~50%

Replace PC with biobased plastics

Bio-polycarbonates are made with isosorbide in place of bisphenol A in a process that avoids the use of phosgene

P Overview of total emission reduction opportunity by 2030

MtCO₂e, 2030, assuming levers pursued in parallel¹

Indirect Direct

¹ Individual levers have larger potential if pursued alone; 3 Including shift to bio-based plastics;

SOURCE: Analysis based on industry reports and interviews

Contents Polyvinyl choride (PVC) Rigid polyurethane Polycarbonate Polyalphaolefins Carbon fiber reinforced plastics

Introduction to rigid PU¹

- Polymer used as insulation material
- One of the most effective insulation materials in terms of insulation value
- Comprises 10-15% of total insulation market
- Regional product since low density makes it expensive to ship, however, intermediates and components are traded
- End-user applications include, e.g., construction and appliances

Key facts

- ~1.3 million metric tons production in Europe (comprising ~25% of global production)
- Total emissions: 6.2 6.6
 MtCO₂e (4.1 5.9 tCO₂e per ton PU)
- Produced by reacting an isocyanate (often MDI) with a polyol

REGIONAL PRODUCTS/PROCESSING: RIGID POLYURETHANE Overview of value chain and associated emissions

1 Includes transport emissions; 2 No reuse or recycling assumed because of low waste generation today; 3 Residual from Plastics Europe PU Eco-profile when excluding MDI and polyol emissions. Split between direct and indirect emissions assumed to be 50:50; 4 Data from PU, MDI and polyol Eco-profiles; 5 Depending on end-of-life solution. Energy recovery emissions amount to ~1.5 tCO2e / ton PU; 6 Cradle-to-gate figures based on figures from Eco-profiles. Cradle-to-grave given by adding end-of-life solution; 7 Assuming energy recovery is used as disposal method for 50% of all PU SOURCE: Analysis based on industry reports and interviews

REGIONAL PRODUCTS/PROCESSING: RIGID POLYURETHANE Key abatement levers across the value chain

REGIONAL PRODUCTS/PROCESSING: RIGID POLYURETHANE Overview of total emission reduction opportunity by 2030

1 Individual levers have larger potential if pursued alone; 2 Assuming same carbon footprint as today with 5% production growth rate per year; 3 Including additional transportation and process emissions (10% reduction of abatement)

SOURCE: Analysis based on industry reports and interviews

REGIONAL PRODUCTS/PROCESSING: RIGID POLYURETHANE Polyurethane regional production cost

¹ Additives add 30-50% cost to PU

^{2 5} kta PU plant using purchased TDI, integrated PO and polyether polyols SOURCE: McKinsey margin models

Contents Polyvinyl choride (PVC) Rigid polyurethane Polycarbonate Polyalphaolefins Carbon fiber reinforced plastics

customer/ service intensive products: polyalphaolefins Introduction to polyalphaolefins 1

Introduction to PAO²

- PAOs used mainly as base fluid for lubricating oils
 - PAO as base fluid (Group IV classification) with ~50% share in synthetic lubricant base fluid segment
 - 5% share of total lubricant market
- High-performance lubricant properties (e.g., viscosity, low temperature resistance, low pour point)
- Replaces mineral-oil-based base fluids (Group I-III) in selected applications due to higher purity/performance and despite its higher costs
- Produced by integrated oil companies or chemical companies, e.g.,
 ExxonMobil and Dow
- Close collaboration, e.g through EOM certification, making it a customer/ service intensive product

Key facts

- Total European production: 213 thousand metric tons
- Total emissions: 0.8-1.4³ MtCO₂e (4.5-6.5 tCO₂e per ton PAO)
- Produced through the polymerization of an alpha-olefin

- 1 Polyalphaolefins used in synthetic lubricants, i.e., not polyethylene or other polyolefins
- 2 Polyalphaolefins
- 3 Lower range assuming 20% recycling/reuse, upper range assuming no recycling/reuse

SOURCE: Analysis based on industry reports and interviews

CUSTOMER/ SERVICE INTENSIVE PRODUCTS: POLYALPHAOLEFINS Overview of value chain and associated emissions

1 Assuming same emissions as HDPE-production (given similarity in production method), one extra polymerization step is added to account for PAO synthesis. Polymerization steps also scaled up by up to 30% to represent higher complexity and lower scale in PAO production; 2 Assuming incineration is final end-of-life solution; 3 Lower range assuming 20% recycling/reuse rate, upper range assuming no recycling/reuse SOURCE: Analysis based on industry reports and interviews

customer/service intensive products: polyalphaolefins Key abatement levers across the value chain

Switch to bio-ethylene as feedstock

- Up to 50% of ethylene replaced with bioethylene by 2030, with 40% emission reduction per ton ethylene
- Possibility of using bio-ethylene varies. depending on lubricant characteristics and plant configurations

Increase collection rate

- Through technological advancements and legislation, share of lubricants that is collectable assumed to increase from 50% to 60%
- Share of collectable lubricants that is collected assumed to go from 80% to 95%
- Collection more viable within large applications (e.g ships)

Increase reuse and re-refining rate

- Today only 13% of collected synthetic lubricants are reused in similar applications, in addition 38% are re-refined into new base oils
- Total reuse-and re-refining rate assumed to increase to 75% of collected lubricants.
- Separating PAO from other lubricants in collection face is a challenge

Move towards bio-based base oils

- Metathesis technology and BBOs2 are possible bio-based alternatives, with up to 80% lower GHG emissions than PAO
- Replaceability of PAO remains challenge. In 2030, up to 50% could be possible

Improve process and energy efficiency

- Continuous efficiency improvements in multiple process steps leading to a 25% reduction by 2030
- In line with historical emission and energy reductions

Switch to green energy throughout the value chain

Non-fossil energy share of total electricity production assumed to increase from today's 46% to ~70%1, reducing CO2 emissions from electricity generation by ~50%

Switch group I-III **lubricants for PAO**

- More effective synthetic lubricants can reduce fuel consumption by 1-3%. This is applicable on 50% of the vehicle fleet
- PAO is used as base in 50% of more effective lubricants

MtCO₂e, 2030, assuming levers pursued in parallel¹

Indirect Direct

¹ Individual levers have larger potential if pursued alone; 2 Assuming same carbon footprint as today with 2% production growth rate per year (European consumption growth prediction); 3 Biosynthetic base oils; 4 Including shift to bio-based base oils; 5 Excluding shift to bio-based base oils SOURCE: Analysis based on industry reports and interviews

CUSTOMER/ SERVICE INTENSIVE PRODUCTS: POLYALPHAOLEFINS Polyalphaolefins regional production cost

Contents Polyvinyl choride (PVC) Rigid polyurethane Polycarbonate Polyalphaolefins Carbon fiber reinforced plastics

INNOVATION/HIGH-VALUE PRODUCTS: CFRP Introduction to carbon fiber reinforced plastic

Introduction to CFRP

- CFRP (carbon fiber reinforced plastic) is made of carbon fiber and a resin (a matrix material)
 - Carbon fiber is a long, thin strand of material consisting of ~95% carbon
 - Most common resin is **epoxy**, another example is polyester
- Key properties of CFRP include high stiffness, strength and durability
- Widely used in aerospace, automotive and wind energy sectors
- **Highly expensive material,** which is the main barrier for broader use today, significant research ongoing

Key facts

- Production of ~15 thousand metric tons in EU 2012
- Total emissions: 300-400 thousand metric tons CO2e (~25-28 tCO2e per ton CFRP)
- Demand growth of ~15% between 2009 and 2012, mainly driven by increased usage in production of aircraft
- Concentrated market where few players control majority of the world's capacity, e.g. Toray and Toho Tenax
- Different precursors can be used although PAN precursor constitutes ~90% of production

CFRP applications

Strong demand growth in many markets

 CFRP sees strong growth potential in all major markets from different drivers

Automotive

Fuel efficiency trends increase need for lightweight constructions

Wind energy

 Regulations and incentives to cut CO₂ emissions and increase wind power

.....

.....

.....

Large diameter turbines off-shore

Aviation

- Increased use in aircrafts, replacing metal parts
- Growing aircraft deliveries

Engineering

- Growing demand in infrastructure repair and replacement market
- Applications include, e.g., bridges

Sporting goods

Growth largely dependent on discretionary spending and shift of material

Other

Growth areas include e.g. pressure vessels in natural gas vehicles and high-speed ferries

Estimated production growth

- Due to high labor and energy costs, growing demand in Europe will likely be met by increased imports to large extent
- Expected EU27 capacity growth of 0-5% p.a.- yet, significant upside

Production

EU27. thousand tons

Note: Based on total European production of 15 thousand metric tons 2012

1 RTM (resin transfer molding) used for high-volume production and SMC (sheet molding compound) used for low volume production, the fiber and resin can be combined through e.g. forming prepring or preform; 2 Include production/extraction of naphtha, propylene production from naphtha and acrylonitrile production from propylene; 3 Energy intensive step from spinning; 4 Include heating up to 1,500°C; 5 Assuming production emissions of 2.3 tCO2e/ ton polyester resin, 40wt% polyester/ kg CFRP; 6 Here illustrated by SMC; 7 Incineration most CO2 intensive choice of end-of-life solutions with ~3.3 ton CO2/ ton CFRP; 8 Currently little CFRP going EOL

SOURCE: Analysis based on industry reports and interviews

INNOVATION/HIGH-VALUE PRODUCTS: CFRP Key abatement levers across the value chain

Shift to alternative precursors in carbon fiber production

- 20% emission reductions in carbon fiber production if lignin can be industrialized compared to PANprecursor based fibers
 - Still technical advancements required, research ongoing
- Shift to oil-based polyethylene
 - Less potential than lignin but more feasible

Increase use of recycled carbon fiber in production

- Currently only certain types of carbon fiber can be recycled
- Boeing has identified potential to reduce production costs with ~70% and energy use requirements with >98%

Replace steel used in cars with CFRP

- Replacing steel with CFRP in body structure can reduce weight of standard car by ~200kg
- Emission reduction of 8.4g/ 100kg weight reduction (standard car) per km
- Main barrier for large scale use is current cost, which is expected to decrease rapidly

Raw **PAN** End-of-life **Final product Fibers** materials precursor processes Resin

Switch to green energy

 Non-fossil energy share of total electricity production to be increased from today's 46% to ~70%1, reducing CO₂ emissions from electricity generation by ~50%

Improve process and energy efficiency

- Potential improvement of >50% in energy efficiency
- Energy efficiency not in focus today as stable processes are still deemed most important
- Areas of improvement include precursor production², precursor processing³, and part making⁴

- 1 Based on Enerdata Emergence case
- 2 E.g., using melt-spinning rather than solution spinning
- 3 E.g., substitute for oven based process for fiber stabilization and oxidation
- 4 E.g., reducing cycle times by adapting faster curing resins
- SOURCE: Analysis based on industry reports and interviews

MtCO₂e, 2030, assuming levers pursued in parallel¹

- 1 Individual levers have larger potential if pursued alone
- 2 Assuming 5% production growth from 2012
- 3 Split direct/indirect estimated based on target steps of levers
- 4 Conservative vs. Boeing's estimates
- 5 Additional production emissions (not likely from production within EU) required to reach CFRP penetration of 2-10% in automotive, split on assumed car life time of 13 years
- 6 Annual emission reductions in the automotive industry
- SOURCE: Analysis based on industry reports and interviews

The full abatement potential is not commercially available